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(57) ABSTRACT

Methods, systems, and computer-readable storage media for
selecting columns for selecting encryption to perform an
operator during execution of a database query. Implementa-
tions include actions of determining a current encryption type
of a column that is to be acted on during execution of the
database query, the column storing encrypted data, determin-
ing a minimum encryption type for performance of the opera-
tor on the column, selecting a selected encryption type based
on the current encryption type, the minimum encryption type,
and a budget associated with the column, and performing the
operator based on the selected encryption type.
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SEARCHABLE ENCRYPTION FOR
INFREQUENT QUERIES IN ADJUSTABLE
ENCRYPTED DATABASES

BACKGROUND

Encrypted databases provide data protection (security) in
cloud platforms and/or database-as-a-service settings. In
encrypted databases, data can be encrypted at the client and
can be provided to the database for storage. Adjustable
encryption has been introduced for processing queries on
encrypted data, while protecting sensitive data stored in the
(cloud) database. During adjustable encryption, a database
column is adjusted to a necessary level of encryption, e.g.
order-preserving encryption, for a set of executed queries. In
some cases, the encryption level is not reversed. This has the
drawback that long running databases will eventually trans-
form into only order preserving encrypted databases.

SUMMARY

Implementations of the present disclosure include com-
puter-implemented methods for encryption selection for que-
rying of databases storing encrypted data. In some implemen-
tations, actions include determining a current encryption type
of a column that is to be acted on during execution of the
database query, the column storing encrypted data, determin-
ing a minimum encryption type for performance of the opera-
tor on the column, selecting a selected encryption type based
on the current encryption type, the minimum encryption type,
and a budget associated with the column, and performing the
operator based on the selected encryption type. Other imple-
mentations of this aspect include corresponding systems,
apparatus, and computer programs, configured to perform the
actions of the methods, encoded on computer storage devices.

These and other implementations can each optionally
include one or more of the following features: actions further
include determining the budget associated with the column
based on a previous budget associated with the column and a
cost parameter; actions further include one of setting the cost
parameter to a first value, if the minimum encryption type is
deterministic encryption, and setting the cost parameter to a
second value, if the minimum encryption type is order-pre-
serving encryption; the selected encryption type is the mini-
mum encryption type, and is selected in response to deter-
mining that the budget is less than or equal to the cost
parameter; the selected encryption type is searchable encryp-
tion, and is selected in response to determining that the budget
is not less than or equal to the cost parameter; the selected
encryption type is the minimum encryption type, and is
selected in response to determining that the current encryp-
tion typeis less than or equal to the minimum encryption type;
and the budget is provided in terms of time.

The present disclosure also provides a computer-readable
storage medium coupled to one or more processors and hav-
ing instructions stored thereon which, when executed by the
one or more processors, cause the one or more processors to
perform operations in accordance with implementations of
the methods provided herein.

The present disclosure further provides a system for imple-
menting the methods provided herein. The system includes
one or more processors, and a computer-readable storage
medium coupled to the one or more processors having
instructions stored thereon which, when executed by the one
or more processors, cause the one or more processors to
perform operations in accordance with implementations of
the methods provided herein.
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It is appreciated that methods in accordance with the
present disclosure can include any combination of the aspects
and features described herein. That is, methods in accordance
with the present disclosure are not limited to the combina-
tions of aspects and features specifically described herein, but
also include any combination of the aspects and features
provided.

The details of one or more implementations of the present
disclosure are set forth in the accompanying drawings and the
description below. Other features and advantages of the
present disclosure will be apparent from the description and
drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 depicts an example high-level architecture in accor-
dance with implementations of the present disclosure.

FIG. 2 depicts trust assumptions in an outsourced database
service model.

FIG. 3 depicts an example process that can be executed in
accordance with implementations of the present disclosure.

FIG. 4 is a schematic illustration of example computer
systems that can be used to execute implementations of the
present disclosure.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Implementations of the present disclosure are generally
directed to encryption selection for querying of databases
storing encrypted data. More specifically, implementations of
the present disclosure provide budget-based encryption
selection as part of query planning for making an appropriate
choice between, for example, searchable encryption and
deterministic encryption, or order-preserving encryption. In
this manner, searchable encryption is provided as an alterna-
tive, and maintains security while only marginally impacting
performance when applied only to infrequent queries.

In order to protect data stored in databases, e.g., cloud
databases maintained by third-parties, data can be processed
in encrypted form. In some examples, order-preserving
encryption (OPE) is used to process encrypted data. For
example, OPE enables queries, e.g., structured query lan-
guage (SQL) queries, to be processed without modification.
In order to increase security, adjustable encryption can be
provided, and includes layering of encryption in onions. In
adjustable encryption, queries are analyzed and the encryp-
tion layer is adjusted before query execution. In this manner,
only the layers necessary for query execution, e.g. determin-
istic encryption instead of OPE, are revealed, and thus secu-
rity is increased.

In some examples, a database storing encrypted data starts
(e.g., encrypted data is stored, no queries have been executed)
in a completely secure mode (cold mode). Decryption opera-
tions are required, when querying the database starting from
the cold mode. Consequently, the database transforms into a
less secure mode (hot mode). The hot mode is efficient,
because little to no decryption operations are necessary, and
queries can be processed on the data as is. In some examples,
this transformation is never reversed. More particularly,
because information is leaked during the transformation from
the cold mode to the hot mode, there is no reason to again
encrypt the data. This lack of reversion has the negative
consequence that the database may ultimately reach a state
that has columns encrypted using only OPE. Consequently, in
a long running database (e.g., a database that has been avail-
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able for querying for a relatively long time and/or that has
been queried a relatively high number of times), adjustable
encryption may be no better than pure OPE.

In some examples, the set of all queries that can be applied
to the encrypted database determines the encryption level,
even if some queries contribute little to the overall load of the
database. Particularly, the long tail of the query distribution
may have a negative effect on security. These queries are
infrequently executed (e.g., only once), but have the same
impact on security as the most frequently reoccurring queries.

In view of this, implementations of the present disclosure
provide a mechanism for dealing with infrequent queries. In
some implementations, infrequent queries are identified, and
are processed using searchable encryption. In general,
searchable encryption is a randomized, strongly secure
encryption scheme where the key holder can issue tokens for
particular queries (e.g., equality, range). In some examples,
searchable encryption includes multiple operations. For
example, encryption transforms a keyword-plaintext pair
(e.g., keyword-value pair) into a ciphertext using a secret key.
The secret key can be used to generate a search token for a
specific keyword. Using the search token, a set of ciphertexts
can be searched for ciphertexts that match the keyword. In
this manner, data can be encrypted, but still searched without
decryption. In some examples, all data, for which no token
has been issued, remains semantically secure.

Implementations of the present disclosure provide intelli-
gent encryption selection to select between encryption types
(e.g., searchable encryption, OPE, deterministic encryption
(DET)). As described in further detail herein, searchable
encryption is used until a predefined cost threshold has been
achieved, and only then is decryption used. In this manner, the
time to transform from the cold mode to the hot mode is
increased, while infrequent queries are processed using
searchable encryption.

FIG. 1 depicts an example high-level architecture 100 in
accordance with implementations of the present disclosure.
The high-level architecture 100 includes a computing device
102, e.g., client-side, a server system 104 and a network 106.
In some examples, the computing device 102 and the server
system 104 communicate over the network 106. In some
examples, the computing device 102 can communicate with
the server device 104 over one or more networks, e¢.g. the
network 106. In some examples, the computing device 102
can include any appropriate type of computing device such as
a desktop computer, a laptop computer, a handheld computer,
a tablet computer, a personal digital assistant (PDA), a cellu-
lar telephone, a network appliance, a camera, a smart phone,
an enhanced general packet radio service (EGPRS) mobile
phone, a media player, a navigation device, an email device,
a game console, or an appropriate combination of any two or
more of these devices or other data processing devices.

In some implementations, the server device 104 includes at
least one server and at least one data store. In the example of
FIG. 1, the server device 104 is intended to represent various
forms of servers including, but not limited to a web server, an
application server, a proxy server, a network server, and/or a
server pool. In general, server systems accept requests for
application services and provides such services to any num-
ber of client devices, e.g., the computing device 102, over the
network 106.

In some implementations, the network 106 can include a
large computer network, such as a local area network (LAN),
a wide area network (WAN), the Internet, a cellular network,
a telephone network (e.g., PSTN) or an appropriate combi-
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4

nation thereof connecting any number of communication
devices, mobile computing devices, fixed computing devices
and server systems.

In accordance with implementations of the present disclo-
sure, the server system 104 can maintain a database that stores
encrypted data, e.g., an encrypted database. In some
examples, the data is encrypted at the computing device 102,
and the encrypted data is sent to the server system 104 over
the network 106 for storage. In some implementations, and as
described herein, the server system 104 can be provided by a
third-party service provider, which stores and provides access
to the encrypted data.

In some implementations, the database is part of a database
system that also includes a query execution engine. In some
examples, the query execution engine receives a query (e.g.,
a search token from a client), provides a query plan based on
the query, executes the query plan to provide a response (e.g.,
encrypted data from the database that is responsive to the
query), and transmits the response to the client (e.g., from
which the query was received). In some examples, and as
described in further detail herein, the query execution engine
performs encryption selection in accordance with implemen-
tations of the present disclosure. In some examples, and as
described in further detail herein, the query execution engine
communicates with a module that performs encryption selec-
tion in accordance with implementations of the present dis-
closure.

FIG. 2 depicts trust assumptions in an outsourced database
service model. In the depicted example, a trusted side 200 and
anuntrusted side 202 are provided, between which, encrypted
data 204 is exchanged. In some examples, the trusted side 200
corresponds to a customer-side (e.g., client-side), and the
untrusted side corresponds to a third-party service provider
(e.g., a cloud storage service provider). The trusted side 200
includes a client 206 and a query 208. In some examples, the
client 206 includes an encrypt/decrypt module 210 and a key
store 212. The untrusted side 202 includes a server 220 having
a UDF and adjustment/searching module 222 and a data store
224. In some examples, the data store 224 stores encrypted
data that is to be queried. In some examples, the client 206 is
provided in the computing device 102 of FIG. 1, and the
server 220 is provided in the server system 104 of FIG. 1.

In some implementations, the client 206 receives the query
208, the query encrypt/decrypt module 210 encrypts the
query to provide a search token using an appropriate key from
the key store 210. The search token is provided to the server
220. In some examples, the UDF and adjustment/searching
module 222 performs encryption selection, as described in
further detail herein, at least partially based on the search
token and encryption levels of implicated columns.
Encrypted data that is responsive to the search token is
retrieved from the data store 224 and is transmitted to the
client 206. The client 206 decrypts the encrypted data to
provide a plaintext search result for the query 208.

Security is a major concern for outsourced databases. In the
database-as-a-service model, an independent service pro-
vider offers its database to clients. The clients need to entrust
their data to the cloud service provider without having control
over unwanted disclosures (e.g., to insiders or hackers). The
solution to this outsourced security problem is to encrypt data
before sending it to the (cloud) database for storage. The key
(encryption/decryption key) remains at the client (the key
holder). This is easy to implement for simple storage, but the
clients must remain able to query the database.

In some implementations, a database can be provided as an
in-memory database. In some examples, an in-memory data-
base is a database management system that uses main
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memory for data storage. In some examples, main memory
includes random access memory (RAM) that communicates
with one or more processors, e.g., central processing units
(CPUs), over a memory bus. An in-memory database system
can be contrasted with database management systems that
employ a disk storage mechanism. In some examples, in-
memory database systems are faster than disk storage data-
bases, because internal optimization algorithms can be sim-
pler and execute fewer CPU instructions, e.g., require
reduced CPU consumption. In some examples, accessing
data in an in-memory database system eliminates seck time
when querying the data, which provides faster and more
predictable performance than disk-storage databases. In
some examples, an in-memory database can be provided as a
column-oriented in-memory database, in which data tables
are stored as sections of columns of data (rather than as rows
of data). In some examples, in-memory databases compress
the data stored therein. An example compression technique
includes dictionary compression, which is usable with DET
and OPE.

Encryption selection in accordance with implementations
of'the present disclosure enable multi-objective optimization
of a query plan. In some examples, either a more efficient
query plan, or a more secure query plan is selected. More
particularly, and as described in further detail herein, different
query plans—using different encryption schemes—are
implemented for addressing the trade-off between security
and performance in querying on encrypted data. In some
examples, a query plan includes one or more operators that
are to be performed to execute the query. In some examples,
aquery plan can be provided as a tree, where nodes of the tree
are the operators and edges represent a control flow, e.g.,
results of a child operator are provided as input to a parent
operator. For example, each operator reads input columns
either from a data source, e.g., a table, or from its child nodes,
and produces output columns that are returned to a parent
node. In some examples, executing the query amounts to
calling the root node iterator. In some examples, for read
scenarios, data is “pulled” from tables, such that the data flow
is opposite to the direction of the edges. In some examples,
the leaves of the tree are scanning operators on the tables or
indices as stored in the database. In between the scanning
operators, index access, sorting, joining and aggregation
operators can be provided.

As part of the query plan, each operator is assigned an
encryption level. This operator encryption level corresponds
to the maximum data encryption level possible that can still
execute the operator correctly. For example, and as descried
herein, DET is sufficient for an aggregation operator that
includes a “group by” clause. As another example, and as
described herein, OPE is necessary for sorting.

OPE, DET, and homomorphic encryption (HOM) can be
used to query encrypted data. Each encryption scheme has
respective algebraic properties. In some examples, encryp-
tion of plaintext x to provide ciphertext ¢ can be denoted as:

c=E{x)
where T is the encryption type (e.g., Te{OPE, DET, HOM}).

Insome examples, decryption of ciphertext ¢ to provide plain-
text x can be denoted as:

x=D{c)
OPE preserves the order of plaintexts. This can be
described as:
¥syS = Eopp(x)<Eope(y)

where x and y are plaintext. DET preserves equality of plain-
texts. This can be described as:
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=y S = Eoppx)~Eope(y)

In HOM, multiplication of ciphertexts (modulo a key-depen-
dent constant) maps to addition of the plaintexts. This can be
described as:

DrondErond®) Emony))=>+y

Using these algebraic properties, relational operators for
most queries can be performed on the encrypted data (the
ciphertext) without decrypting the encrypted data. For
example, a table scan operation with equality or range selec-
tion conditions can be performed without decrypting the
encrypted data. Such operations can be performed, for
example, on OPE-encrypted data and/or DET-encrypted data.
As another example, join operations can be performed, for
example, on OPE-encrypted data and/or DET-encrypted data.
In another example, grouping (e.g., group by clause) can
operate on DET-encrypted data. In some examples, data func-
tions, (e.g., minimum, maximum, counting) can be per-
formed on the encrypted data. In some examples, it is not
necessary to modify the relational operator implementation
compared to a regular, non-encrypted database implementa-
tion. The operators perform the same computation on the
ciphertexts as they would on the plaintexts.

In some examples, for aggregation operations (e.g., sum,
average) HOM is used. For example, if the database multi-
plies the (selected) ciphertexts, a ciphertext of the aggregate is
provided. This requires only a small change to the operator
implementation, which can be provided by user-defined func-
tions. In this manner, a large subset of queries can be per-
formed on encrypted data using the appropriate encryption
type. However, a customer should still be able to choose the
encryption type that is appropriate for their data. Encryption
types, however, have different security levels and may be
incompatible.

Incompatible encryption makes executing a query impos-
sible. For example, a range query cannot be performed on
HOM-encrypted data. As another example, combinations of
encryption schemes may be required by specific queries. The
following example query can be considered:

SELECT x FROM T GROUP BY y HAVING

SUM(z)>100
In this example, the sum function requires HOM and the
greater-than comparison requires OPE. Such queries cannot
be executed on encrypted data in the server-side database,
because no appropriate encryption scheme exists.

Further, different encryption types have different security
levels. For example, HOM, such as Paillier’s encryption
scheme, is semantically secure. Semantic security means that
it is computationally impossible to distinguish two cipher-
texts, even if the adversary may choose their plaintexts.
Semantic security implies that ciphertexts are randomized
(e.g., equality is not preserved under encryption). In some
examples, DET leaks this equality and is therefore less
secure. Security guarantees have been established under the
assumption that the plaintexts have high entropy. In some
examples, OPE is not only deterministic, but also leaks the
order of the plaintexts, and is therefore, less secure.

In view of the foregoing, HOM (standard encryption) is
more secure than DET, which is more secure than OPE. In
some examples, HOM can be said to be greater than DET, and
DET can be said to be greater than OPE, from a security
point-of-view. Accordingly, a first encryption type can be
compared to a second encryption type to determine whether
the first encryption type is less than or equal to the second
encryption type. For example, if the first encryption type is
OPE and the second encryption type is DET, it can be deter-
mined that the first encryption type is less than the second
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encryption type. As another example, if the first encryption
type is DET and the second encryption type is DET, it can be
determined that the first encryption type is equal to the second
encryption type. As another example, if the first encryption
type is HOM and the second encryption type is DET (or
OPE), it can be determined that the first encryption type is not
less than or equal to the second encryption type.

The foregoing observation implies that the client should
carefully choose its encryption types for data outsourcing.
For example, OPE or DET should be used, if it is necessary to
enable particular queries and achieve the highest security
level. However, the set of to-be-executed queries may be
unknown at design-time (e.g., when selecting encryption
types before encrypting and storing encrypted data in the
database). In some examples, and to address this, randomized
encryption (RND) is provided, which enable retrieval, but not
queries. OPE enables a superset of queries to deterministic
encryption. Consequently, RND, DET and OPE can provide
a layered ciphertext, referred to as onion. For example, for
each plaintext x, the following example sequence of encryp-
tions (onion) can be provided:

Ernn(Eper(Eops(x)))

Initially, the example onion only allows retrieval due to
RND. In some examples, when the client encounters a query
that requires DET, (e.g., a selection using equality), the
encrypted database is updated. For example, the client-side
device sends the key D, () to the database for decrypting
the RND (first onion layer). In some examples, the database
uses a user-defined function to perform the update, such that
the database stores:

Eprr(Eope(x)

This enables the new query (e.g., a selection using equality) to
be executed.

This can be repeated in the case of a query that requires
OPE to execute. For example, the client-side device sends the
key Dz, () to the database for decrypting the DET (second
onion layer). In some examples, the database uses a user-
defined function to perform the update, such that the database
stores:

Eopr(X)

In some examples, HOM is handled differently and is
stored in a separate column. For example, the separate col-
umn enables aggregation operations, but does not harm secu-
rity, because HOM is semantically secure. Accordingly, lay-
ering is not possible with HOM, because HOM needs to
encrypt the plaintext x for the correct result in aggregation
operations.

The above-described approach (layering) is referred to as
adjustable encryption, introduced above, because it repre-
sents an adjustment mechanism of the database to the series of
executed queries. Adjustable encryption enables dynamic
adjustment of encryption types without knowing all queries
in advance. Furthermore, the adjustment is unidirectional.
That is, once decrypted to DET or OPE, it is not necessary to
return to a higher encryption level to enable a subsequent
query. Security against the cloud service provider has already
been weakened, because the less secure ciphertext (e.g., sec-
ond onion layer, third onion layer) has been revealed at least
once and can therefore be used in cryptanalysis.

As introduced above, implementations of the present dis-
closure use searchable encryption as an alternative to DET
and OPE in adjustable encryption. More particularly, and as
described in further detail herein, searchable encryption is
used for infrequent queries. In this manner, security is
improved by sacrificing performance of queries on columns
that are rarely used.
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In some examples, searchable encryption enables the (pri-
vate) key holder (e.g., the customer) to issue a search token for
a query string. Using the search token, the ciphertext holder
(e.g., the third-party service provider) can compare a cipher-
text to the query string. The result of this comparison (e.g.,
match, no match) is immediately revealed in plaintext.
Searchable encryption exists for symmetric-key and public-
key encryption. In some implementations, the symmetric-key
variant is used due to better performance and the lack of need
for a public key.

In some implementations, a searchable encryption of the
present disclosure includes the following example opera-
tions: sk<—KeyGen(A), which generates a secret key sk for a
security parameter A; c<—Enc(sk, x), which encrypts the
plaintext x into the ciphertext ¢ using the secret key sk;
t<TrapDoor(sk, x), which generates a trapdoor search token
t for plaintext x using secret key sk; and T/L<Test (t, ¢),
which returns Tif the search token matches and L if the
search token does not match.

In some implementation, the ability to decrypt is optional
(e.g., another encrypted column of the same data can be used
for decryption). Correctness of searchable encryption can be
defined as:

Vsk<—KeyGen(}))

Vx

Vc<—Enc(sk, x)

Vt<—T rapDoor(sk,x)

Test(te)= T

In some examples, x & y denotes the assignment of any
value different from y to x, where soundness of searchable
encryption is defined as:

Pr[V¥sk<—KeyGen(_)
Vx
Vc<—Enc(sk, x)
VYt & TrapDoor(sk,x)
Test(t,c)= T|<1/poly(A)
In general, searchable encryption is semantically secure
except for ciphertexts, for which a respective search token has

beenrevealed. Security of searchable encryption is defined by
the following game:

1. A challenger (customer) runs the KeyGen(A) operation
to generate sk.

2. An attacker (adversary A ) can adaptively ask the chal-
lenger for the ciphertext ¢ or the trapdoor t for any
plaintext x of its choice.

3. At some point, the attacker sends the challenger two
plaintexts X, x, on which it wishes to be challenged. The
only restriction is that the attacker did not previously ask
for the trapdoors. The challenger picks a random be {0,
1} and gives the attacker &=Enc(sk, x,).

4. The attacker can continue to ask for ciphertexts ¢ or
trapdoors t for any plaintext x of its choice, as long as
x€{X, X, }.

5. Bventually, the attacker outputs b'e{0, 1} and wins the
game if b=Db'. In other words, the attacker wins the game,
if it can correctly guess whether it was given the cipher-
text for x,, or x,. The attacker’s advantage in breaking
searchable encryption can be provided as:

Adv(W)=IPrfb=b]-14|

In some examples, semantic security against an adaptive cho-
sen plaintext attack is defined as:
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Advd) < oD

In some implementations, searchable encryption is used
with a block cipher F, (e.g. advanced encryption standard
(AES)) with key k in electronic codebook (ECB) mode. In
some examples, sk is a secret key of the block cipher. To
encrypt a plaintext X, a random (e.g., uniformly random) bit
sequence r of length of the block size of F, is chosen, and the
ciphertext ¢ is obtained. For example:

c=Enc(skx)=(1F (7))

To generate a trapdoor t, the plaintext x is encrypted using
the block cipher. For example:

t=TrapDoor(sk,x)=F ;(x)

The test operation encrypts the plain r in the ciphertext and
compares it to the second part. For example:

Test(z,c)=F,(r)="F, Fac (")

In some implementations, range queries are provided and
are match-revealing (e.g., in case of a match, the range may be
revealed). In some examples, only symmetric encryption is
implemented, and is therefore orders of magnitude faster
(e.g., relative to match-concealing searchable encryption).

In some implementations, an upper limit m of the plaintext
domain is provided, and an interval I=1,,={0, 1, ..., 2"-1}.
In some examples values in | are encrypted in such a way that
there is an efficient way to issue query tokens for a subinterval
J <=1, which enables a determination as to whether the cipher-
text of a value v satisfies a predicate p(v):=(v € J). The
ciphertext ¢ is provided as a tuple that includes randomized
searchable encryption ciphertexts.

In some implementations, aset J ofall sub-intervals of Tof
the form [k2’, (k+1)2] is considered (for non-negative inte-
gers k, 1) only (e.g., the intervals whose length is a power of
two and which are “aligned” (in the sense that their lower
border is a multiple of the length)). In some examples, the
following observations are provided: any point vel naturally
determines m such intervals it is contained in; and any sub-
interval Jel can be decomposed into at most 2 m-1 intervals
from I.

In some examples, the set of all intervals J (v)={Je7 Ivel}
of'the special form which contain v, is assigned to each value
vel,,,. Because, for any given vand ie{0, 1, ..., m-1} there is
exactly one matching k the set J (v) contains exactly m such
intervals. All possible intervals are mapped to some unique
identifier in a deterministic and easy to calculate manner. In
some examples, for Je 7 , D(J) is the corresponding identifier.
Because I contains 2™~ intervals of length 27 (fori=0, 1, . . .
m-1), there are 27*'-1 elements in J . Consequently, m(m+
1) bits are sufficient to store the m intervals associated to any
vel.

In some implementations, it is assumed that a subinterval J
< 1is provided, which is the (disjoint) union J=J, U ... U J,
of intervals from J . Consequently, veJ if and only if vel, for
some i=1, . . ., k, and the latter is true, if and only if
{J.11=i<k}NJ (v)~@A. This relation can be checked for the
identifiers instead of the intervals themselves. Consequently:

veJ&= = (D) 1 =isk}N{DE)IKeT J())~0

Doing this check in a straight forward way requires O(m?)
comparisons. However, the sets in the intersection can be
pre-sorted and hence the effort can be reduced to O(m).

In some implementations, a scan of symmetric searchable
encryption can either be linear-based or index-based. The use
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of an index reduces search time, because each distinct plain-
text is tested only once. In some examples, implementing a
(secure) index requires modification of the relational opera-
tor. Such a modification is not only space inefficient due to the
size of the indices, but also limits the general applicability of
the approach. Every column and every possible conjunction
and disjunction would need to be equipped with an index (for
the entire row). Implementations of the present disclosure use
linear scan in order to integrate searchable encryption into the
database engine.

In some implementations, searchable encryption
(SEARCH) is provided as a user-defined function (UDF). For
the ciphertext ¢ stored in the database and a trapdoor t, UDF
(c, t) implements the Test (c, t) operation of searchable
encryption. Each row (i.e., an entire column) is scanned using
the UDF including duplicate plaintexts. This mode of inte-
gration enables the use of all table scan operators on the
ciphertexts. Consequently, almost the entire query language
(e.g., SQL) functionality can be used, as well as processing
searchable encryption (instead of DET and OPE) in selec-
tions. For additional functions, such as grouping or joins,
DET can be used, and, for aggregation, HOM can be used.

As described in further detail herein, implementations of
the present disclosure enable detection and handling of infre-
quent queries. More particularly, implementations of the
present disclosure use searchable encryption for infrequent
queries, instead of DET or OPE. In some examples, search-
able encryption in the UDF can handle selection similar to
DET and OPE, but at higher security and lower performance.
Infrequent queries are identified, such that an appropriate
encryption can be selected (e.g., searchable encryption, DTE,
OPE) to keep any impact on performance low, while enhanc-
ing the relative gain in security.

Implementations of detecting and handling infrequent que-
ries are described in further detail with reference to an
example. The example includes an adjustably encrypted data-
base and the following two sequences A and B of queries:

Sequence A:

SELECT x FROM T WHERE y>10

SELECT x FROM T WHERE y>10

SELECT x FROM T WHERE y>10

SELECT x FROM T WHERE y>10

SELECT x FROM T WHERE y>10

Sequence B:

SELECT x FROM T WHERE y=10

SELECT x FROM T WHERE y>10

SELECT x FROM T WHERE y=10

SELECT x FROM T WHERE y=10

SELECT x FROM T WHERE y=10

In some examples, using the standard adjustment algo-
rithm, both sequences result in an OPE of column y. However,
if in sequence B, the second query is processed using search-
able encryption, the security would remain at DET and any
adverse impact to performance would be relatively small.
Implementations of the present disclosure address identifying
and handling queries, such as sequences A and B, as an
infrequent query. In some examples, this problem can be
described as a scheduling problem, in which an optimizer
makes a decision based on future inputs (queries). The deci-
sion problem in case of the first query of sequence A and the
second query of sequence B are almost identical. A query
requiring a database adjustment appears for the first time, and
an optimizer has to decide whether to use searchable encryp-
tion or to decrypt. In some implementations, first-time
appearing queries are treated as infrequent queries until they
reach a specified threshold, then decrypt if the threshold is
exceeded.
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In view of this, implementations of the present disclosure
use a budget mechanism to identify infrequent queries. In
some examples, for each column col of an encrypted data-
base, a budget budget|[col] is provided. In some examples,
each budget describes the extra amount of time allowed for
searchable encryption (compared to DET or OPE) for the
respective column. In some examples, each budget can be
maintained in an arbitrary but fixed unit of time (e.g., milli-
seconds). In accordance with implementations of the present
disclosure, for each column, searchable encryption is used
until the budget is used up (i.e., reaches 0). Once the budget
expires, encryption switches from searchable encryption to
other encryption schemes (e.g., DET, OPE).

In some implementation, parameters o and 3 are provided.
In some examples, whenever a query is executed the param-
eter o is added to the budget of the respective column(s). In
some examples, the parameter [3 defines an upper bound of the
budget. That is, the budget is never increased beyond . In
some examples, when searchable encryption is used, the
additional cost of the query is deducted from the budget. In
some examples, o is the cost of searchable encryption for
equality operations, and T is the cost of searchable encryption
for ranges. In some implementations, this process, which is
described in further detail below with reference to FIG. 3, can
be run for several different sets of columns. For example, a
query (e.g., SQL query) can use a number of columns, not
only the ones in selection.

Implementations of the present disclosure provide a plu-
rality of update strategies, each update strategy being used to
choose the column(s) to be updated. In a first strategy S1, the
budget is increased for all columns used as selection param-
eters. In a second strategy S2, the budget is increased for all
columns occurring in the query in any role (e.g. also in the
result list). In a third strategy S3, the budget is increased for all
columns of all tables occurring in the query. In a fourth
strategy S4, the budget is increased for all columns of the
database scheme used. It is appreciated that the above-de-
scribed strategies are example strategies and are not exhaus-
tive of strategies that could be implemented.

By way of example, a database with tables T,=(a,
b, ¢) and T,=(d, e}, where a, b, ¢, d, e are respective col-
umns, and query SELECT b FROM T, WHERE a=101is to be
processed. The following example table indicates, which col-
umns are refilled for the respective strategies described
above:

TABLE 1

Example Strategies

Strategy Refilled Columns
S1 a

S2 a, b

S3 a,b,c

S4 a,b,c,d, e

> 05

It can be noted that, the budget is decreased only for those
columns, for which searchable encryption is used instead of
OPE or DET.

In some implementations, costs o and T depend on the
number of rows, to which the test function needs to be
applied. For simple scans on complete database tables this
number is readily available. However, as soon as there are
other selection conditions, which narrow the result set, the
test function is first applied. Consequently, the actual number
of rows the function acts on is estimated. In some implemen-
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tations, itis assumed that the selection conditions occurring in
the queries are independent and reduce the result set by a fixed
factor.

The following example listing describes an implementa-
tion of

Listing 1: Encryption Selection

Input:
col: column of operation
db: database state of the column (RND, DET, OPE)
Lvl: required database state
Output:
enc: encryption to use (RND, DET, OPE, SEARCH)
function SelectEncryption(col, db, lvl)
budget[col] < MIN(p, budget[col] + a)
if db = lvl then
return 1vl
end if
if Ivl == DET then
cost <= O
else if Ivl == OPE then
cost <= T
else cost <= 0
end if
if budget[col] = cost then
return 1vl
end if
budget[col] <= budget[col] - cost
return SEARCH
end function

FIG. 3 depicts an example process 300 that can be executed
in accordance with implementations of the present disclo-
sure. In some examples, the example process 300 can be
provided as one or more computer-executable programs
executed using one or more computing devices. In some
implementations, the example process 300 is executed by a
query execution engine of a database system, described
above. In some implementations, the example process 300 is
executed by a module (e.g., the client 206 of FIG. 2.

A query plan is received (302). For example, a query plan
is provided based on a query, and includes one or more opera-
tors and a set of columns that are implicated by the query. In
some examples, the set of columns includes one or more
columns (e.g., € =[col,, ..., col,]). In some examples, the set
of columns is provided based on a budget update strategy
(e.g., Sy, S5, S;, S,, described above). That is, the set of
columns includes columns that are to be updated based on the
budget update strategy that is being applied. A counteri is set
equal to 1 (304). In some examples, the counter i tracks the
columns in the set of columns that are to be updated.

For col,, db, and 1vl, are determined (306). For example, db,
can be provided by/from the query execution engine, and
indicates the current encryption level of col,. As another
example, 1vl, can be provided in the query plan (e.g., provided
by/from the query execution engine), and indicates the
required level of encryption for at least one operator of the
query plan that is to be applied to col,. A current budget for
col; (budget[col,]) is determined (308). In some examples,
budget[col,] is determined as the minimum of § and budget
[col, ]+, where budget[col,|+c is provided as the previous
budget of col, (e.g., after the last operator was executed on
col,) plus the parameter o.

It is determined whether db, is less than or equal to 1vl,
(310). For example, if db, is OPE and 1vl, is DET, it is deter-
mined that db; is less than Iv],. As another example, if db, is
DET and Ivl, is DET, it is determined that db, is equal to 1vl,.
As another example, it db, is DET and lvl, is OPE, it is
determined that db, is not less than or equal to 1vl,. If it is
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determined that db; is less than or equal to 1vl,, the operator in
question is performed using Ivl, (312). It is determined
whether the counter i is equal to n (314). More specifically, it
is determined whether all columns in the set of columns have
been considered. If the counter i is not equal to n, the counter
i is incremented (316), and the example process 300 loops
back to consider the next column in the set of columns. If the
counter i is equal to n, the example process 300 loops back to
consider the next received query plan, if any.

Ifit is determined that db, is less not than or equal to 1vl,, it
is determined whether 1vl, is DET (318). If Ivl, is DET, a cost
parameter cost is set equal to a value 0 (320). IfIvl, is not DET,
it is determined whether 1v1, is OPE (322). If 1vl, is OPE, the
cost parameter cost is set equal to a value T. It is determined
whether budget[col,] is less than or equal to cost (326). If
budget[col,] is less than or equal to cost, the operator in
question is performed using 1vl, (312). If budget[col,] is not
less than or equal to cost, budget[col,] is decremented by cost
(328), and the operator in question is performed using
SEARCH. In some implementations, if budget[col,] is not
less than or equal to cost, it can first be determined whether,
for example, the operator is to be performed using OPE. For
example, if, in the same query there is a JOIN operation using
the same column together with some other column that is
already decrypted to OPE, OPE can be used (even though
there is budget available to use SEARCH.

Referring now to FIG. 4, a schematic diagram of an
example computing system 400 is provided. The system 400
can be used for the operations described in association with
the implementations described herein. For example, the sys-
tem 400 may be included in any or all of the server compo-
nents discussed herein. The system 400 includes a processor
410, a memory 420, a storage device 430, and an input/output
device 440. The components 410, 420, 430, 440 are intercon-
nected using a system bus 450. The processor 410 is capable
of processing instructions for execution within the system
400. In one implementation, the processor 410 is a single-
threaded processor. In another implementation, the processor
410 is a multi-threaded processor. The processor 410 is
capable of processing instructions stored in the memory 420
or on the storage device 430 to display graphical information
for a user interface on the input/output device 440.

The memory 420 stores information within the system 400.
In one implementation, the memory 420 is a computer-read-
able medium. In one implementation, the memory 420 is a
volatile memory unit. In another implementation, the
memory 420 is a non-volatile memory unit. The storage
device 430 is capable of providing mass storage for the sys-
tem 400. In one implementation, the storage device 430 is a
computer-readable medium. In various different implemen-
tations, the storage device 430 may be a floppy disk device, a
hard disk device, an optical disk device, or a tape device. The
input/output device 440 provides input/output operations for
the system 400. In one implementation, the input/output
device 440 includes a keyboard and/or pointing device. In
another implementation, the input/output device 440 includes
a display unit for displaying graphical user interfaces.

The features described can be implemented in digital elec-
tronic circuitry, or in computer hardware, firmware, software,
or in combinations of them. The apparatus can be imple-
mented in a computer program product tangibly embodied in
an information carrier, e.g., in a machine-readable storage
device, for execution by a programmable processor; and
method steps can be performed by a programmable processor
executing a program of instructions to perform functions of
the described implementations by operating on input data and
generating output. The described features can be imple-
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mented advantageously in one or more computer programs
that are executable on a programmable system including at
least one programmable processor coupled to receive data
and instructions from, and to transmit data and instructions to,
a data storage system, at least one input device, and at least
one output device. A computer program is a set of instructions
that can be used, directly or indirectly, in a computer to
perform a certain activity or bring about a certain result. A
computer program can be written in any form of program-
ming language, including compiled or interpreted languages,
and it can be deployed in any form, including as a stand-alone
program or as a module, component, subroutine, or other unit
suitable for use in a computing environment.

Suitable processors for the execution of a program of
instructions include, by way of example, both general and
special purpose microprocessors, and the sole processor or
one of multiple processors of any kind of computer. Gener-
ally, a processor will receive instructions and data from a
read-only memory or a random access memory or both. Ele-
ments of a computer can include a processor for executing
instructions and one or more memories for storing instruc-
tions and data. Generally, a computer can also include, or be
operatively coupled to communicate with, one or more mass
storage devices for storing data files; such devices include
magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and optical disks. Storage
devices suitable for tangibly embodying computer program
instructions and data include all forms of non-volatile
memory, including by way of example semiconductor
memory devices, such as EPROM, EEPROM, and flash
memory devices; magnetic disks such as internal hard disks
and removable disks; magneto-optical disks; and CD-ROM
and DVD-ROM disks. The processor and the memory can be
supplemented by, or incorporated in, ASICs (application-
specific integrated circuits).

To provide for interaction with a user, the features can be
implemented on a computer having a display device such as a
CRT (cathode ray tube) or LCD (liquid crystal display) moni-
tor for displaying information to the user and a keyboard and
apointing device such as a mouse or a trackball by which the
user can provide input to the computer.

The features can be implemented in a computer system that
includes a back-end component, such as a data server, or that
includes a middleware component, such as an application
server or an Internet server, or that includes a front-end com-
ponent, such as a client computer having a graphical user
interface or an Internet browser, or any combination of them.
The components of the system can be connected by any form
or medium of digital data communication such as a commu-
nication network. Examples of communication networks
include, e.g., alLAN, a WAN, and the computers and networks
forming the Internet.

The computer system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a network, such as the described
one. The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.

In addition, the logic flows depicted in the figures do not
require the particular order shown, or sequential order, to
achieve desirable results. In addition, other steps may be
provided, or steps may be eliminated, from the described
flows, and other components may be added to, or removed
from, the described systems. Accordingly, other implemen-
tations are within the scope of the following claims.

A number of implementations of the present disclosure
have been described. Nevertheless, it will be understood that
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various modifications may be made without departing from
the spirit and scope of the present disclosure. Accordingly,
other implementations are within the scope of the following
claims.

What is claimed is:

1. A computer-implemented method for selecting encryp-
tion to perform an operator during execution of a database
query, the method being executed using one or more proces-
sors and comprising:

determining, by the one or more processors, a current

encryption type of a column that is to be acted on during
execution of the database query, the column storing
encrypted data;

determining, by the one or more processors, a minimum

encryption type for performance of the operator on the
column;

selecting, by the one or more processors, a selected encryp-

tion type based on the current encryption type, the mini-
mum encryption type, and a budget associated with the
column; and

performing, by the one or more processors, the operator

based on the selected encryption type.

2. The method of claim 1, further comprising determining
the budget associated with the column based on a previous
budget associated with the column and a cost parameter.

3. The method of claim 2, further comprising one of setting
the cost parameter to a first value, if the minimum encryption
type is deterministic encryption, and setting the cost param-
eter to a second value, if the minimum encryption type is
order-preserving encryption.

4. The method of claim 2, wherein the selected encryption
type is the minimum encryption type, and is selected in
response to determining that the budget is less than or equal to
the cost parameter.

5. The method of claim 1, wherein the selected encryption
type is searchable encryption, and is selected in response to
determining that the budget is not less than or equal to the cost
parameter.

6. The method of claim 1, wherein the selected encryption
type is the minimum encryption type, and is selected in
response to determining that the current encryption type is
less than or equal to the minimum encryption type.

7. The method of claim 1, wherein the budget is provided in
terms of time.

8. A non-transitory computer-readable storage medium
coupled to one or more processors and having instructions
stored thereon which, when executed by the one or more
processors, cause the one or more processors to perform
operations for selecting encryption to perform an operator
during execution of a database query, the operations compris-
ing:

determining a current encryption type of a column that is to

be acted on during execution of the database query, the
column storing encrypted data;

determining a minimum encryption type for performance

of the operator on the column;

selecting a selected encryption type based on the current

encryption type, the minimum encryption type, and a
budget associated with the column; and

performing the operator based on the selected encryption

type.

9. The computer-readable storage medium of claim 8,
wherein operations further comprise determining the budget
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associated with the column based on a previous budget asso-
ciated with the column and a cost parameter.

10. The computer-readable storage medium of claim 9,
wherein operations further comprise one of setting the cost
parameter to a first value, if the minimum encryption type is
deterministic encryption, and setting the cost parameter to a
second value, if the minimum encryption type is order-pre-
serving encryption.

11. The computer-readable storage medium of claim 9,
wherein the selected encryption type is the minimum encryp-
tion type, and is selected in response to determining that the
budget is less than or equal to the cost parameter.

12. The computer-readable storage medium of claim 8,
wherein the selected encryption type is searchable encryp-
tion, and is selected in response to determining that the budget
is not less than or equal to the cost parameter.

13. The computer-readable storage medium of claim 8,
wherein the selected encryption type is the minimum encryp-
tion type, and is selected in response to determining that the
current encryption type is less than or equal to the minimum
encryption type.

14. The computer-readable storage medium of claim 8,
wherein the budget is provided in terms of time.

15. A system, comprising:

a computing device; and

a computer-readable storage device coupled to the com-

puting device and having instructions stored thereon

which, when executed by the computing device, cause

the computing device to perform operations for select-

ing encryption to perform an operator during execution

of a database query, the operations comprising:

determining a current encryption type of a column that is
to be acted on during execution of the database query,
the column storing encrypted data;

determining a minimum encryption type for perfor-
mance of the operator on the column;

selecting a selected encryption type based on the current
encryption type, the minimum encryption type, and a
budget associated with the column; and

performing the operator based on the selected encryp-
tion type.

16. The system of claim 15, wherein operations further
comprise determining the budget associated with the column
based on a previous budget associated with the column and a
cost parameter.

17. The system of claim 16, wherein operations further
comprise one of setting the cost parameter to a first value, if
the minimum encryption type is deterministic encryption,
and setting the cost parameter to a second value, if the mini-
mum encryption type is order-preserving encryption.

18. The system of claim 16, wherein the selected encryp-
tion type is the minimum encryption type, and is selected in
response to determining that the budget is less than or equal to
the cost parameter.

19. The system of claim 15, wherein the selected encryp-
tion type is searchable encryption, and is selected in response
to determining that the budget is not less than or equal to the
cost parameter.

20. The system of claim 15, wherein the selected encryp-
tion type is the minimum encryption type, and is selected in
response to determining that the current encryption type is
less than or equal to the minimum encryption type.

#* #* #* #* #*



